skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chica, Daniel G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report the two-dimensional (2D) bimetallic selenophosphate, LiGaP2Se6, prepared through direct combination reactions and P2Se5 flux methods. The material is a member of the broad class of van der Waals 2D materials of the type M2P2Q6 (M = metals). The structure was determined using single-crystal X-ray diffraction and refined in the chiral space group P3̅1c, with lattice parameters a = b = 6.2993(9) Å, c = 13.308(3) Å, α = β = 90°, γ = 120°. Differential thermal analysis indicated a congruent melting point at ∼458 °C. Optoelectronic properties were assessed using ultraviolet–visible (UV–vis) spectroscopy, showing a band gap of 2.01 eV, and photoemission yield spectroscopy in air (PYSA), which determined a work function of 5.44 eV. Notably, stability studies on LiGaP2Se6 revealed remarkable resilience despite its Li content, showing no structural changes after 2 weeks in ambient air or after soaking in a water/ethanol bath. 
    more » « less
    Free, publicly-accessible full text available July 30, 2026
  2. Abstract Graphene is a privileged 2D platform for hosting confined light-matter excitations known as surface plasmon polaritons (SPPs), as it possesses low intrinsic losses and a high degree of optical confinement. However, the isotropic nature of graphene limits its ability to guide and focus SPPs, making it less suitable than anisotropic elliptical and hyperbolic materials for polaritonic lensing and canalization. Here, we present graphene/CrSBr as an engineered 2D interface that hosts highly anisotropic SPP propagation across mid-infrared and terahertz energies. Using scanning tunneling microscopy, scattering-type scanning near-field optical microscopy, and first-principles calculations, we demonstrate mutual doping in excess of 1013 cm–2holes/electrons between the interfacial layers of graphene/CrSBr. SPPs in graphene activated by charge transfer interact with charge-induced electronic anisotropy in the interfacial doped CrSBr, leading to preferential SPP propagation along the quasi-1D chains that compose each CrSBr layer. This multifaceted proximity effect both creates SPPs and endows them with anisotropic propagation lengths that differ by an order-of-magnitude between the in-plane crystallographic axes of CrSBr. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  3. Atomic defects underpin the properties of van der Waals materials, and their understanding is essential for advancing quantum and energy technologies. Scanning transmission electron microscopy is a powerful tool for defect identification in atomically thin materials, and extending it to multilayer and beam-sensitive materials would accelerate their exploration. Here, we establish a comprehensive defect library in a bilayer of the magnetic quasi-1D semiconductor CrSBr by combining atomic-resolution imaging, deep learning, and calculations. We apply a custom-developed machine learning work flow to detect, classify, and average point vacancy defects. This classification enables us to uncover several distinct Cr interstitial defect complexes, combined Cr and Br vacancy defect complexes, and lines of vacancy defects that extend over many unit cells. We show that their occurrence is in agreement with our computed structures and binding energy densities, reflecting the intriguing layer interlocked crystal structure of CrSBr. Our calculations show that the interstitial defect complexes give rise to highly localized electronic states. These states are of particular interest due to the reduced electronic dimensionality and magnetic properties of CrSBr and are, furthermore, predicted to be optically active. Our results broaden the scope of defect studies in challenging materials and reveal new defect types in bilayer CrSBr that can be extrapolated to the bulk and to over 20 materials belonging to the same FeOCl structural family. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  4. Abstract Since their first observation in 2017, atomically thin van der Waals (vdW) magnets have attracted significant fundamental, and application-driven attention. However, their low ordering temperatures,Tc, sensitivity to atmospheric conditions and difficulties in preparing clean large-area samples still present major limitations to further progress, especially amongst van der Waals magnetic semiconductors. The remarkably stable, high-TcvdW magnet CrSBr has the potential to overcome these key shortcomings, but its nanoscale properties and rich magnetic phase diagram remain poorly understood. Here we use single spin magnetometry to quantitatively characterise saturation magnetization, magnetic anisotropy constants, and magnetic phase transitions in few-layer CrSBr by direct magnetic imaging. We show pristine magnetic phases, devoid of defects on micron length-scales, and demonstrate remarkable air-stability down the monolayer limit. We furthermore address the spin-flip transition in bilayer CrSBr by imaging the phase-coexistence of regions of antiferromagnetically (AFM) ordered and fully aligned spins. Our work will enable the engineering of exotic electronic and magnetic phases in CrSBr and the realization of novel nanomagnetic devices based on this highly promising vdW magnet. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  5. The growth of layered 2D compounds is a key ingredient in finding new phenomena in quantum materials, optoelectronics, and energy conversion. Here, we report SnP2Se6, a van der Waals chiral (R3 space group) semiconductor with an indirect bandgap of 1.36 to 1.41 electron volts. Exfoliated SnP2Se6flakes are integrated into high-performance field-effect transistors with electron mobilities >100 cm2/Vs and on/off ratios >106at room temperature. Upon excitation at a wavelength of 515.6 nanometer, SnP2Se6phototransistors show high gain (>4 × 104) at low intensity (≈10−6W/cm2) and fast photoresponse (< 5 microsecond) with concurrent gain of ≈52.9 at high intensity (≈56.6 mW/cm2) at a gate voltage of 60 V across 300-nm-thick SiO2dielectric layer. The combination of high carrier mobility and the non-centrosymmetric crystal structure results in a strong intrinsic bulk photovoltaic effect; under local excitation at normal incidence at 532 nm, short circuit currents exceed 8 mA/cm2at 20.6 W/cm2
    more » « less
  6. The transport of energy and information in semiconductors is limited by scattering between electronic carriers and lattice phonons, resulting in diffusive and lossy transport that curtails all semiconductor technologies. Using Re6Se8Cl2, a van der Waals (vdW) superatomic semiconductor, we demonstrate the formation of acoustic exciton-polarons, an electronic quasiparticle shielded from phonon scattering. We directly imaged polaron transport in Re6Se8Cl2at room temperature, revealing quasi-ballistic, wavelike propagation sustained for a nanosecond and several micrometers. Shielded polaron transport leads to electronic energy propagation lengths orders of magnitude greater than in other vdW semiconductors, exceeding even silicon over a nanosecond. We propose that, counterintuitively, quasi-flat electronic bands and strong exciton–acoustic phonon coupling are together responsible for the transport properties of Re6Se8Cl2, establishing a path to ballistic room-temperature semiconductors. 
    more » « less